Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35746042

RESUMEN

The flexible, anti-fouling, and bionic surface-enhanced Raman scattering (SERS) biochip, which has a Nepenthes peristome-like structure, was fabricated by photolithography, replicated technology, and thermal evaporation. The pattern of the bionic Nepenthes peristome-like structure was fabricated by two layers of photolithography with SU-8 photoresist. The bionic structure was then replicated by polydimethylsiloxane (PDMS) and grafting the zwitterion polymers (2-methacryloyloxyethyl phosphorylcholine, MPC) by atmospheric plasma polymerization (PDMS-PMPC). The phospholipid monomer of MPC immobilization plays an important role; it can not only improve hydrophilicity, anti-fouling and anti-bacterial properties, and biocompatibility, but it also allows for self-driving and unidirectional water delivery. Ag nanofilms (5 nm) were deposited on a PDMS (PDMS-Ag) substrate by thermal evaporation for SERS detection. Characterizations of the bionic SERS chips were measured by a scanning electron microscope (SEM), optical microscope (OM), X-ray photoelectron spectrometer (XPS), Fourier-transform infrared spectroscopy (FTIR), and contact angle (CA) testing. The results show that the superior anti-fouling capability of proteins and bacteria (E. coli) was found on the PDMS-PMPC substrate. Furthermore, the one-way liquid transfer capability of the bionic SERS chip was successfully demonstrated, which provides for the ability to separate samples during the flow channel, and which was detected by Raman spectroscopy. The SERS intensity (adenine, 10-4 M) of PDMS-Ag with a bionic structure is ~4 times higher than PDMS-Ag without a bionic structure, due to the multi-reflection of the 3D bionic structure. The high-sensitivity bionic SERS substrate, with its self-driving water capability, has potential for biomolecule separation and detection.

2.
Sci Rep ; 9(1): 6854, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048730

RESUMEN

Fine particulate matter 2.5 (PM2.5) induces free radicals and oxidative stress in animals, leading to a range of illnesses. In this study, Ganoderma Microsporum immunomodulatory (GMI) proteins were administered to alleviate PM2.5-induced inflammatory responses in mother rats, and PM2.5-induced inflammatory responses and neurological damage in their offspring. The results suggested that GMI administration decreased the risk of neurological disorders in mother rats and their offspring by reducing the white blood cell count, lessening inflammatory responses and PM2.5-induced memory impairment, and preventing dendritic branches in the hippocampi from declining and microRNAs from PM2.5-induced modulation.


Asunto(s)
Ganoderma/inmunología , Ganoderma/metabolismo , Material Particulado/toxicidad , Animales , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Citocinas/sangre , Femenino , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Aprendizaje por Laberinto , Memoria a Corto Plazo/efectos de los fármacos , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/prevención & control , Estrés Oxidativo/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley
3.
Water Environ Res ; 90(9): 783-789, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30208994

RESUMEN

In this study, a fluidized bed reactor was used to compare heterogeneous and homogeneous crystallization for recovering magnesium ammonia phosphate (MAP) from the dewatering filtrate at a municipal water resource recovery facility. Investigating the factors affecting crystallization revealed that pH exerted a greater effect than the Mg/P molar ratio. The results of a heterogeneous crystallization experiment showed that removal efficiency of phosphate (RP%) and crystal efficiency of phosphate (CP%) were 68% and 66%, respectively, at a PO4-P concentration of 200 mg/L, pH of 8.0, and Mg/P molar ratio of 1.0 for 3 h. The reaction rate of heterogeneous crystallization was markedly higher than that of homogeneous crystallization. Those pellets produced through the heterogeneous crystallization exhibited a dense surface (particle size 0.5-1.0 mm; water content 8.7%). Through scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), and X-ray diffraction (XRD) examination, the crystallized patterns of the needle-shaped pellets were identified as MgNH4PO4·6H2O.


Asunto(s)
Cristalización/métodos , Fosfatos/química , Reactores Biológicos , Magnesio/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
4.
Fungal Genet Biol ; 48(10): 966-78, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21784165

RESUMEN

In the budding yeast Saccharomyces cerevisiae, cell cycle progression and cytokinesis at mitotic exit are proposed to be linked by CDC14 phosphatase antagonizing the function of mitotic B-type cyclin (CLBs). We have isolated a temperature-sensitive mutant, cdc14(A280V), with a mutation in the conserved phosphatase domain. Prolonged arrest in the cdc14(A280V) mutant partially uncoupled cell cycle progression from the completion of cytokinesis as measured by bud re-emergence, in the form of elongated apical projections, and DNA re-replication. In contrast to previous mitotic exit mutants, cdc14(A280V) mutants displayed a strong bias for the first apical projection to form in the mother cell body. Using cdc14(A280V) mutant phenotypes, the functions of the B-type cyclins at mitotic exit were investigated. The preference in mother-daughter apical projection formation was observed to be independent of any individual CLB function. However, cdc14(A280V)clb1Δ cells displayed a pronounced increase in apical projections, while cdc14(A280V)clb3Δ cells were observed to form round cellular chains. While cdc14(A280V) cells arrested at mitotic exit, both cdc14(A280V)clb1Δ and cdc14(A280V)clb3Δ cells completed cytokinesis, but failed cell separation. cdc14(A280V)clb2Δ cells displayed a defect in actin ring assembly. These observations differentiate the functions of CLB1, CLB2, and CLB3 at mitotic exit, and are consistent with the hypothesis that CLB activities are antagonized by the CDC14 phosphatase in order to couple cell cycle progression with cytokinesis at mitotic exit.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclina B/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/biosíntesis , Actinas/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Ciclina B/metabolismo , Fase G1/genética , Mitosis/genética , Mutación , Proteínas Tirosina Fosfatasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
5.
Med Eng Phys ; 30(6): 687-92, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17888713

RESUMEN

Various insole materials were used in attenuation of heel-strike impact. This study presented a compression test to investigate the deformation characteristics of common heel cushions. There were two materials (thermoplastic elastomer "TPE" and silicone) with three hardness and six thickness being analyzed. They underwent consecutive loading-unloading cycles with a load control mode. The displacement of material thickness was recorded during cyclic compression being applied and released from 0 to 1050 N. The energy input, return and dissipation were evaluated based on the load deformation curves when new and after repeated compression. The TPE recovered more deformed energy and thickness than the silicone after the first loading cycle. The silicone would preserve more strain energy with increasing its hardness for the elastic recovery in the unloading process. The deformed energy was decreased as the original thickness did not completely recover under cyclic tests. The reduction in hysteresis area was gradually converged within 20 cycles. The silicone attenuated more impact energy in the initial cycles, but its energy dissipation was reduced after repeated loading. To increase hardness or thickness should be considered to improve resilience or accommodate persistent compression without flattening. The careful selection of cushion materials is imperative to meet individual functional demands.


Asunto(s)
Talón/fisiología , Zapatos , Fenómenos Biomecánicos , Fuerza Compresiva , Elastómeros , Humanos , Traumatismos de la Pierna/prevención & control , Plásticos , Carrera , Siliconas , Estrés Mecánico , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...